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Abstract

This paper examines the effect of private R&D investment on productivity, considering R&D col-

laborations and knowledge spillovers. While existing literature emphasizes R&D’s direct effects

on innovation and cost reduction, it often neglects R&D’s role in shaping collaborative networks.

Investing in R&D enhances a firm’s learning capacity and augments the firm’s appeal as a collabo-

ration partner. Consequently, the effect of R&D is underestimated without accounting for its role

in fostering collaborations. To bridge the gap, I develop a dynamic model of a firm that internal-

izes its decision on whom to collaborate with and following spillovers. This framework allows

R&D to improve productivity and affect the collaboration network, with varying propensities for

collaborations across firms. Using the data on firm-to-firm R&D collaborations among U.S. firms

from 1980 to 2001, I find the long-term effect of R&D is 16% underestimated if we ignore its

subsidiary role in expanding the collaboration network.
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1 Introduction

This paper revisits one of the classic questions in the industrial organization field: How

does Research and Development (R&D) affect productivity and welfare? This reexami-

nation is motivated by a notable trend of increasing R&D collaborations among firms to

enhance productivity, such as Microsoft and Intel’s collaborative work on an operating

system (Hagedoorn 2002).1 Prior studies posit that R&D investment is one of the key

drivers to forming collaborations because of a firm’s forward-looking behavior (Cohen

and Levinthal 1989; Hernán, Marín, and Siotis 2003; Badillo and Moreno 2016). Intu-

itively, in the prospect of future spillovers, large R&D investments make a firm attractive

as a collaboration partner and expand a firm’s capacity to communicate with productive

firms. This raises an empirically important yet unanswered question: Through fostering

collaborations, does R&D have an additional effect on productivity and welfare? Disre-

garding this effect leads to underestimating the R&D’s in-house and social impacts and

misguides firms and policymakers for R&D subsidy. However, the existing methods for

endogenous network formation focus on agents’ static actions.

This paper’s contribution is to provide a methodology that internalizes a firm’s forward-

looking behaviors in forming a network, thereby enabling a comprehensive analysis of the

R&D’s effect in the presence of collaborations and spillovers. In doing so, I first develop

an estimable dynamic structural model that incorporates two crucial features—strategic

R&D network formation and R&D spillovers. This model allows firms’ R&D investments

not only to improve productivity but also to boost collaboration networks, and each firm

has different propensities for forming R&D collaborations. It introduces an additional

channel for R&D to improve productivity via network formation. Next, the model fits

the panel of R&D collaborations of U.S. R&D-intensive firms from 1980 to 2001. Lastly, I

quantify the effect of R&D through networking and give R&D subsidy policy implications.

The framework in this paper extends a dynamic model of a firm employed by Do-

raszelski and Jaumandreu (2013) and Peters et al. (2017), in which private R&D aug-

ments firm-specific productivity unobserved by the econometricians. In the extended

framework, I introduce the following key features: (i) a firm achieves efficiency gain

through its private R&D investment and R&D spillovers from collaborative efforts with

other firms; and (ii) a firm makes dynamic decisions on whom to collaborate with in the

next period based on the expected gains from collaborations. The anticipated benefits

1According to PwC’s 17th Annual Global CEO Survey conducted in 2014, 20% of 1,344 CEOs in 68
countries identified mergers and acquisitions, R&D collaborations, or strategic alliances as significant
strategies. Source: https://www.pwc.com/gx/en/ceo-survey/2014/assets/pwc-17th-annual-global-ceo-
survey-jan-2014.pdf
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are contingent on several firm-specific characteristics, especially their R&D investments,

as well as the decisions made by other firms, which makes networking strategic. This

model allows me to disentangle the private R&D’s effect on productivity into the direct

effect and indirect effect through endogenous network formation.

However, the strategic game of the network formation model inherently embeds two

estimation challenges. First, when firms consider collaborations with all peers, the po-

tential network portfolios grow exponentially, with each collaboration requiring mutual

agreement. To circumvent this, I borrow the idea from Aguirregabiria and Ho (2012)

and introduce the concept of a collaboration delegate–each firm delegates its collabora-

tion decision to these agents. At the cost of the delegate’s restricted information on others’

private shock to network formation, it simplifies an extensive network formation game

of firms into a manageable incomplete information game of delegate pairs deciding on

binary collaboration status.

Second, the dimension of state variables escalates because a delegate’s information set

includes the information of all other firms. To mitigate the high dimensionality problem

and streamline the strategic game among delegates, I adopt the inclusive-values approach

(Hendel and Nevo 2006; Aguirregabiria and Ho 2012) and assume bounded rationality

on delegates. Instead of considering all firms’ information and choices in the economy,

a delegate pair’s decision relies only on key aggregated information and some moments

of the beliefs on other delegate pairs’ decisions. These assumptions are plausible in this

setting but simplify the complicated strategic game with a huge dimension of variables,

making it feasible to estimate.

The model’s estimation unfolds in two stages. First, I estimate the production func-

tion, inclusive of unobserved productivity, extending Ackerberg, Caves, and Frazer (2015).

I additionally provide an extended method to consider productivity spillovers from col-

laborations that are not directly observed from the data. Second, the strategic network

formation model is estimated using Leung (2015)’s two-step estimator. The beliefs on

forming collaborations are estimated under the assumption of the equilibrium symmetric

on observables in the first step, and these beliefs then inform the full model’s estimation.

The theoretical framework suggested in this paper bridges the gap between the two

pieces of literature on R&D and knowledge spillovers by incorporating the decision on

networks into a firm’s dynamic model. Recently beyond the individual returns to R&D,

the social impacts of R&D, particularly the role of spillovers among firms, have obtained

significant attention (Bloom, Schankerman, and Van Reenen 2013; Lychagin et al. 2016;

Konig, Liu, and Zenou 2019; Iyoha 2020; Zacchia 2020; Malikov and Zhao 2021). Yet,

the majority of these studies either assume networks as given or address potential en-
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dogeneity via instrumental variables without internalizing the decision-making process.

A recent pertinent study, Hsieh, König, and Liu (2022), aligns closely with my work,

given its modeling of the joint endogeneity of R&D and R&D networks. The underlying

structure, however, is different from my framework in that I allow R&D and spillovers to

have a direct bearing on unobserved productivity and delve into the dynamic interplay

between R&D and collaborations. This allows me to shed light on the unique dimension

of R&D in enhancing network capabilities, which is the first attempt in the literature to

the best of my knowledge.

Furthermore, from an econometric perspective, my framework diverges from the ex-

isting models with endogenous network formation by considering an agent’s dynamic

incentive to form networks. While there have been substantial advancements in identify-

ing and estimating network formation models and in models with endogenous network

formation, the focus has predominantly been on static models (Johnsson and Moon 2021;

de Paula 2020; Auerbach 2022). My paper enriches this literature by providing a micro-

foundation for a forward-looking firm’s network formation and offering an approach to

simplifying complex strategic games under incomplete information.

Then I bring this model to panel data of mostly cross-market or buyer-supplier R&D

alliances, as well as annual company reports of U.S. R&D-intensive publicly listed firms

from 1980 to 2001. To construct firm-level collaboration networks, I combine two datasets:

(1) the official announcements of R&D alliances and (2) co-patents or co-licensing be-

tween inventors or scientists from different firms (Hagedoorn 2002; Zacchia 2020).

The empirical results suggest that a 10 percent increase in R&D investment leads to

a 6 percent higher likelihood of engaging in any collaboration for firms that haven’t pre-

viously collaborated and a 3 percent increase in the expected number of collaborations

for firms already in R&D collaboration networks. Thus, in the long run, a 10 percent

increase in private R&D investment directly improves productivity by 0.31 percent but

indirectly increases productivity by 0.05 percent through expanding a collaboration net-

work and increased R&D spillovers. (I.e. for a median firm, by investing $147 million

more in R&D, the direct effect on productivity leads to the increase of $165 million in

its output, and the indirect effect through the network formation leads to additional $28

million in its output) It suggests that the effect of R&D is underestimated by 16 percent if

we disregard R&D’s additional role in network formation. These findings indicate while

collaborating firms may lean on R&D partners’s R&D, there is a strategic incentive to

invest in R&D to attract future collaborators.

In addition to the private productivity gains, this study suggests that firms engaged in

collaborations yield additional social benefits through not only spillovers but also broad-
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ening their networks. When I consider endogenous network formation, the wedge be-

tween marginal social and private returns to R&D increased by 22.8 percentage points.

This implies market failure in R&D investment, underscoring the importance of targeted

R&D subsidies for firms involved in collaborations. The findings further reveal a signif-

icant increase in the wedge, particularly among smaller firms with few collaborators.

This is because they are more prone to expand their R&D networks by collaborating

with larger firms, thus leading to higher marginal social returns. In the conventional

approach with exogenous network formation, large firms with many collaborations are

naturally favored for targeted R&D subsidies due to the anticipated social benefits from

their extensive collaborations. However, this paper also highlights that firms with fewer

collaborations should be considered for subsidies, given their propensity to expand their

R&D networks by partnering with larger, more productive firms.

I organize the rest of this paper as follows: The next section describes the data and

features of the sample of the U.S. R&D collaboration network that I observe. Section 3

presents the empirical framework and discusses the challenges and solutions. In section

4, I provide the estimation strategy of the model. Section 5 reports the empirical results

of the model and discusses the effect of R&D and policy implications on R&D subsidies.

Section 6 concludes.
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2 Data: U.S. R&D Collaboration Network

I begin by describing the data employed to illustrate the firm-level R&D collaboration

network within the U.S. to highlight features important for my empirical methodology.

R&D collaborations refer to partnerships between firms sharing resources, expertise, and

costs to conduct R&D activities. For example, Intel and HP collaborated on developing

a new microprocessor architecture in the 1990s. While R&D collaborations span from

equity-based joint ventures to contractual agreements, the general procedure for R&D

collaboration can be summarized as follows. Forming a collaboration with a potential

collaborator takes time and money. It includes examining the credibility and suitability

of potential partners, setting specific aims, scope, and effective dates, and drafting a legal

contract. Once effective, firms exert and share R&D efforts. The duration of collaboration

might or might not be set, but firms typically review the ongoing processes annually to

decide whether to continue, amend, or terminate.2

For the study, I rely on a panel of publicly listed U.S. firms with at least one patent

from 1980 to 2001 in the S&P COMPUSTAT database, as initially assembled by Bloom,

Schankerman, and Van Reenen (2013). COMPUSTAT gathers companies’ financial state-

ments from form 10-K reports submitted to the U.S. Securities and Exchange Commission

(SEC), providing comprehensive information on firms’ sales, capital stock, R&D invest-

ments, expenses, and employees. Specifically, the restriction on firms that have obtained

patents is for focusing on R&D-intensive firms and their collaborations. This process

yields an unbalanced panel dataset of 715 mostly manufacturing firms, each with at least

four observations between 1980 and 2001, and therefore 13,720 firm-year observations.

Two data sources capture R&D collaborations among those firms. The first source is

cross-licensing activities between firms obtained from Zacchia (2020). The United States

Patents and Trademark Office (USPTO) data from the NBER archive provides detailed in-

formation on U.S. patents. Each patent is associated with unique identifiers for individual

inventors and the firms to which the patent is assigned. It reveals collaborations through

patents jointly filed with multiple firms, enabling the construction of an R&D alliance

network based on co-patenting. It captures both official and unofficial collaborations

effectively.

To complement the first data source and identify collaborations that did not produce

a co-patent, I combined the second data source, the Cooperative Agreements and Tech-

nology Indicators (CATI) database. It documents technology agreements between U.S.

2The collaboration process can be inferred from the examples of R&D collaboration agreements or
contracts from the U.S. Securities and Exchange Commission (SEC).
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firms collected from various sources, including newspaper and journal articles, books,

specialized journals, and company annual reports (See Hagedoorn (2002) and Schilling

(2009))3. These agreements encompass alliances that entail technology transfer or joint

research initiatives. Combining these two data sources, the analysis involves 19,667 R&D

collaborations among the sample of firms.

Descriptive patterns in collaborations Out of 715 firms studied, 453 have engaged

in at least one collaboration within the analyzed time frame, with a median of 3 collab-

orations per collaborating firm. But there is an increasing trend in the sample. Figure 1

left graph depicts the yearly count of total and ‘connected’ firms—those with at least one

collaboration. Despite sample attrition in recent years, the number of connected firms

escalated between 1981 and 1998.4 The right graph in Figure 1 demonstrates a similar

trend for the total number of collaborations and averaged collaborations per firm. This

suggests a potential growth in inter-firm networks.5

The collaboration data reveals that 33% of firm-year observations have a single col-

laboration, while 80% have under 10 as described in Figure 10. Multiple collabora-

tions might indicate different collaborations or a large R&D collaboration consortium.

Although exact forms of collaborations cannot be perfectly retrieved from co-patenting

data, official announcements from the CATI database indicate that over 90% involve just

two firms and less than 1% constitute large consortiums. Hence, this paper assumes

one-on-one collaborations without additional group collaboration impact.

In this data set, most collaborating firms are across-market or buyer-supplier pairs.

Figure 2 shows the kernel density distributions of the Mahalanobis market and technol-

ogy similarity measures between collaborators.6. The mean market and technological

similarities are 0.18 and 0.87, with medians at 0.03 and 0.76, respectively. Specifically,

67% of firm pairs operate in different industries, and the median market similarity is

still 0.17 for within-industry pairs (See Appendix A.2 for the summary of the industries

collaborating firms operate). This suggests that while most collaborating firms exhibit

technological congruity, they generally operate in distinct markets. Collaborations be-

3I would like to express my gratitude to Professor Hagedoorn for providing this dataset.
4For detailed information and possible explanations of the attrition of the sample, see Bloom, Schanker-

man, and Van Reenen (2013).
5However, this increase might reflect the surge in patent counts over the past two decades, as the

collaboration data is principally drawn from co-patent activities, although a consistent rising trend is also
observed in officially announced R&D collaborations from the CATI database (Hagedoorn 2002).

6For market similarity, I define niq as the number of a sales agent in product market q for a firm i
for the proxy of sales in product market q. Then the Mahalanobis market similarity measure is given as
∑Y

q=1(
niτ
ni

n jq

n j
)nin j . The measure for technological similarity can be similarly defined using the information

on technological fields of patents firms have.
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Table 1: Summary statistics

No network
# of networks

below median above median
Yi t: sales (value-added) 460.3 710.7 3,752
Li t: employees (thousand) 8.954 14.39 52.69
Ki t: capital stocks 867.0 1,163 7,078
Yi t/Li t 49.87 55.59 80.56
Ri t: R&D expenditures 9.368 40.35 606.5
Observations 8,628 2,803 2,289

*This table reports average characteristics of firms in the sample based on the number of
networks. All monetary values are in 2009 million USD.

tween market rivals, such as Apple and IBM7, are rare due to potential business stealing

effects unless anticipated collaboration benefits like market expansion, surpass the dis-

advantages. Therefore, this paper’s theoretical model will concentrate on the positive

spillovers from collaborations rather than the effects of market rivalry.

Table 1 displays summary statistics for firm accounting data based on the number of

networks. It suggests that firms with more collaborations tend to be larger regarding

sales, input variables, and R&D expenditures. Especially Figure 3 shows the positive re-

lationship between R&D investments and the number of collaborations. This correlation

is confounded with other firm characteristics. However, I conduct the reduced-form re-

gression (See Appendix A.3), controlling for other firm variables, and I find there is still

a significant positive effect of R&D on the number of collaborations.

One concern with the data is the scarcity of information on the duration of collabo-

rations.8 To address this, a standard 3-year duration for R&D partnerships is assumed,

following precedent studies (Hanaki, Nakajima, and Ogura 2010; Konig, Liu, and Zenou

2019) and a survey9. Co-licensing data assumes that a co-patent between two firms at

time t implies a connection lasting from t − 1 to t + 1. Official R&D collaborations are

presumed to last 3 years from the announcement date unless the exact duration is known.

Another limitation is that I focus on patent-holding U.S. firms that are publicly listed,

omitting smaller and non-patent-holding entities. Given the paper’s emphasis on exam-

ining spillovers among R&D-intensive firms, this narrowed focus is deemed justified, as

such firms are usually large and publicly listed.10

7Apple and IBM were rivals in the personal computer market but collaborated on PowerPC architecture
to compete with Intel’s processors.

8Around 15% of the sample from the CATI database have duration information.
9Using a survey of the top managers of 52 companies in the biotechnology industry, Deeds and Hill

(1998) found that the average duration of R&D collaborations is 3.47 years
10Other potential sample selection issues, including this exclusion criterion, are discussed in detail in

8



Figure 1: The number of connected firms and average links per firm

Figure 2: Kernel density distributions of Mahalanobis
market and technological similarity measures

Figure 3: Log of lagged R&D expenditures and the number of collaborations
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3 Theoretical Framework

This section introduces a dynamic structural model that captures spillovers and a firm’s

decision-making process regarding R&D collaborations. First, in the following subsection

3.1, I introduce a firm’s production function with firm-specific productivity that benefits

from both private R&D investment and R&D spillover from collaborating firms. Then to

account for the indirect effect of private R&D through network formation, the section 3.2

provides a micro-foundation for R&D collaboration decision, offering a comprehensive

analysis of the underlying mechanism that drives the decision-making process. In partic-

ular, I discuss the potential challenges in estimating the model and propose an approach

that is plausible but significantly streamlines the estimation for the network formation

model. Lastly, using the suggested theoretical framework, the section 3.3 disentangles

the effect of R&D and defines the direct effect and indirect effects through network for-

mation.

3.1 Production and endogenous productivity

Production function There are N firms in the economy, i = 1, ..., N that live infinitely

many discrete periods, t = 1, ...,∞. At each period t, firm i has a Cobb-Douglas produc-

tion function with Hicks neutral production technology:

yi t = α0 +αkki t +αl li t +ωi t + εi t (1)

where yi t , li t , and ki t are value-added(output minus intermediate inputs), labor, and

capital in logs, respectively. The firm-specific productivity ωi t captures efficiency in pro-

duction, such as technological innovation or absorption, changes in process and labor

composition, and managerial abilities, unobserved by the econometricians but known to

the firm when making decisions. However, a stochastic shock to production, εi t , is not

known to both the firm and econometrician until the actual short-run profit is realized

at the end of the period; thus, it is independent of all variables known to the firm. In the

short run, the capital stock, ki t , is regarded as a fixed factor.

Assuming a firm operates in a monopolistically competitive market and input prices

are exogenously given, the profit-maximizing problem of a firm determines all the flexible

input variables and output prices. In this context, for a given capital stock, the firm’s

(expected) short-run profit, denoted by πi t , is characterized by its productivity, i.e., πi t =

Appendix B.4. of Bloom, Schankerman, and Van Reenen (2013).
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π(ωi t).11

Productivity evolution process The firm-specific productivityωi t endogenously evolves

within the model and follows a controlled first-order Markov process:

ωi t+1 = β0 + β1ωi t + β2ri t + β3Si t + ui t+1 (2)

where ui t+1 is productivity shock i.i.d. across time and firms. Private R&D investment

flow in logs is denoted as ri t , and spillover is denoted as Si t . Spillover Si t indicates R&D

spillovers, Σ j ̸=i gi j t t i j r j t where r j t is firm j’s R&D investment flow and t i j is time-invariant

Jaffe technological similarity measure between firm i and j.12 The binary R&D collabo-

ration status between firm i and j at period t is denoted as gi j t ∈ {0,1}. The network is

undirected, i.e., gi j t = g ji t , and self-tie is excluded, i.e., gii t = 0. Thus R&D spillovers,

Σ j ̸=i gi j t t i j r j t , is the technology-weighted sum of collaborating firms’ R&D inputs, and it

captures the effect of firms in R&D collaborations sharing each other’s R&D resources or

experts/scientists. Spillovers Si t might also include productivity spillovers, Σ j ̸=i gi j t t i jω j t

to account for learning from collaborators’ endowed knowledge or technology summa-

rized by productivity. This will be discussed more in section 4.1, but I simply set Si t

as only R&D spillovers for the benchmark. The remaining uncertainty, νi t+1, reflects the

randomness inherently embedded in the R&D process, including success in innovation or

discovery. The model captures important aspects of productivity evolution by assuming

that ωi t+1 not only persists over time but is also allowed to be shifted by other dynamic

choices, including R&D investment and spillovers from R&D collaborations.

The identification of improvement effects from private R&D and spillovers is based

on a structural assumption about timing. The evolution process implicitly presumes that

learning occurs with a delay which is why private R&D and spillovers are lagged, implying

that the improvements in firm productivity take a period to materialize (Malikov and

Zhao 2021). Consequently, the identification of the equation (2) is obtained once we

know productivity levels.

This production model does not specify a negative business-stealing effect from col-

laborations. As discussed in section 2, most R&D collaborating firms are across-market

or buyer-supplier pairs, so they do not suffer from market-rival effects from collabora-

tions. However, in section 3.2, to allow firms’ tendency to avoid market rivals when

11For simplicity, I would suppress the capital stock throughout the theoretical framework.
12Jaffe technological similarity measure is defined as

F ′i F jp
Fi
p

F j
where Fi denotes the vector of the shares

of firm i’s patenting in different technology field.
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choosing collaborators in anticipation of potential business-stealing effects, the measure

for market similarity between two firms will be considered as a form of networking cost.

3.2 R&D collaboration decision

This framework considers R&D collaborations, gi t = (gi1t , ..., giN t), as firms’ decisions.

Therefore, R&D investment ri t not only enhances productivity in the next period but also

influences the formation of next-period collaborations, gi t+1, leading to higher spillovers

in the future. This subsection establishes the micro-foundation for internally developed

R&D collaboration networks.

Throughout this subsection, time subscript t is suppressed, and superscript ′ will refer

to the future period in order to simplify the exposition.

Timeline Before introducing the model, I clarify a firm’s timeline for dynamic decisions

in a period. A firm’s timeline within a period t is given as follows:

1. At the beginning of each period, firm-specific productivity ωi is realized and short-

term profit π(ωi) is determined.

2. A firm decides on the level of R&D investment ri under the given productivity level

ωi and the current collaboration status gi = (gi1, ..., giN ).

3. For the remainder of the period, a firm determines its R&D collaborations for the

next period, g′i = (g
′
i1, ..., g ′iN).

Our main interest is in the third stage, the R&D collaboration decision stage. The first

stage, where the short-term profit is determined, is discussed in the previous section 3.1.

Subsequently, in the second stage, the firm decides on the level of R&D investment to

improve productivity under the given collaboration status. This can be a strategic game

between firms. Since we would focus on the third stage, I would rely on the assumption

that the equilibrium of firms’ R&D investments exists and that R&D levels we observe are

determined by one of the equilibria if there are many. A specific model for R&D invest-

ment can be found in Appendix B. For the rest of the period, a firm communicates with

potential R&D collaboration partners and determines its one-period R&D collaborations

for the next period. In the case of the existing collaborations, firms would update and

determine whether they continue or quit the next period. This timeline reflects the de-

scription of the process of R&D collaboration in section 2 and implies that forming R&D

collaboration takes time to be effective due to the process of communication and making

contracts or evaluating the process.
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firm1

g1

firm2

firm3

...

firmN−1

firmN

Figure 4: Firm choosing N − 1 collaborations

Information set In the R&D collaboration decision stage, a firm can potentially collabo-

rate with any other firms in the economy. First, the firm draws a vector of unobserved (to

researchers) i.i.d networking cost shocks νi = (νi1, ...,νiN ). It captures innate uncertainty

in a communication process or matching niche needs for technology. It is pair-specific

and symmetric between two firms (i.e., νi j = ν ji). Also, it can observe all firms’ produc-

tivity ω= (ω1, ...,ωN ), R&D input levels r= (r1, ..., rN ), a current collaboration network

g = [gi j]i, j and networking cost variables x = [xi j]i, j in the economy. A vector of net-

working cost variables xi j is used to capture heterogeneity in networking costs, such as

similarities and past collaboration status. I will denote the observable information as a

matrix of state variables s= (ω, r,g,x).

Collaboration decision problem After a firm observing (s,νi), a firm determines or

updates its one-period collaboration status with N − 1 other firms as in Figure 4. Every

collaboration is one-on-one, and there is no complementarity or substitution from form-

ing a collaboration with more than one firm. This assumption relies on the pattern in the

data described in section 2, in which 90% of official collaborations involve only 2 firms.

A value function for a firm that represents this procedure is given as follows13:

Vi(s,νi) = π(ωi)+ max
g∗′i =(g

∗′
i1 ,...,g∗′iN )

§

ρEt

�

Vi(s
′,ν′i)
�

�

�s,gi

�

−Σ j ̸=i g
′
i j(C(xi j) + νi j)
ª

s.t. g ′i j = 1 if g∗
′

i j = 1 and g∗
′

ji = 1 for all j
(3)

where C(·) is a pair-specific networking cost function and ρ is a discount factor. A firm

chooses its latent collaboration status g∗i by comparing the potential benefits expected

to obtain from collaborations and the networking cost. The networking cost is incurred

13If there is any R&D cost incurred in the R&D investment decision stage, it would be included in the
model, but I suppress it for simplicity.
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firm1

Delegate12

Delegate13

...

Delegate1,N−1

Delegate1,N

Delegate21

Delegate31

...

DelegateN−1,1

DelegateN ,1

firm2

firm3

...

firmN−1

firmN

...

g12

g13

g1,N−1

g1,N

Figure 5: Firm delegating N − 1 collaboration decisions

once the collaboration is determined and involves the network formation and networking

costs, such as the costs for drafting a contract and communication.14 The cost function

C is given as:

C(xi j) = γ0 + γ1 gi j + γ2ai j + γ3a2
i j + d⊺i jγd (4)

where xi j ≡ (gi j, ai j, a2
i j,d
⊺
i j)
⊺ is a (xc×1) vector of networking cost-related variables, ai j t

is the duration of collaboration, and di j t is a vector of technology, market, geographical,

and R&D-size similarities. It implies networking costs depend on previous relationships

and various similarities between the two firms. Then, if corresponding firms agree with

their collaboration, the actual R&D collaboration between them, gi j, will be effective in

the next period.

3.2.1 Alternative approach and reducing the dimensionality

The described framework, however, entails some problems that complicate the estimation

of the model: (1) The action set of the firm’s choice on collaborations, gi, is {0,1}n−1,

therefore the size of the choice set is 2n−1 which is huge even with a moderate number of

firms. (2) Forming collaborations requires agreements from corresponding firms and is

a strategic game between firms. (3) The dimension of the state variables s = (ω, r,g,x)
is enormous because it includes information on the current collaboration network in the

industry and all other firms’ productivity and R&D levels. I address those difficulties by

introducing (1) collaboration delegates and (2) inclusive values and bounded rationality

of delegates.

14The actual networking cost is more likely to be incurred after the next period collaborations become
effective. However, the timing of incurring networking cost—before or after the collaboration is effective—
does not affect the model if the idiosyncratic part of cost νi is known at period t.
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Collaboration delegates Instead of a firm itself deciding n− 1 collaborations simulta-

neously, I assume that it delegates its n− 1 decisions to agents for collaborations—I call

them collaboration delegates. Now every firm has n− 1 collaboration delegates, one for

each possible collaboration. It sends collaboration delegates to other firms and makes

them discuss the collaboration decisions with other firms’ collaboration delegates, as de-

scribed in Figure 5. Therefore, for a collaboration i j, a delegate-pair i j (equivalently, a

delegate-pair ji) from firms i and j together decides on the collaboration status for the

next period, g ′i j, by maximizing the sum of the two firms’ expected profit. A distinguishing

aspect of the collaboration delegate model is that a delegate-pair i j can only observe their

own private cost shock, νi j, but not other delegate-pairs’ private cost shocks, including

firm i or j’s inner relationships’ shocks, νik or ν jk for k ̸= i, j.

A similar idea has been used in the game-theoretic analysis, including the relation-

ship between upstream and downstream firms (Bjornerstedt and Stennek 2007; Collard-

Wexler, Gowrisankaran, and Lee 2019) and the problem of firms with many markets

such as airline industries (Aguirregabiria and Ho 2012), but it has not been employed in

a collaboration setting. Especially in the context of R&D collaborations, this assumption

could be plausible. An R&D collaboration is usually described as conducting an R&D

project together by a group of inventors or scientists. The detailed aspects of the project

tend to be recognized fully only by the involved people. It corresponds to the collabo-

ration delegates model where the delegate of collaboration cannot perfectly observe all

the information of other collaborations. However, it excludes the cases when delegates

in a firm can communicate and share their private information.

This model also excludes the case when more than 2 firms form an R&D consortium

together. In that case, they might choose collaboration status by maximizing the sum

of all engaged firms’ expected values, not every firm pair’s. However, as described in

section 2, more than 90% of official collaborations in the U.S. involve only 2 firms. Thus,

the problem caused by limiting the formation to one-on-one would not be severe in this

empirical setting.

Assumption 1.

1. A firm assigns a delegate for each collaboration. Firm i and j’s delegates for the

collaboration i j choose g ′i j ∈ {0, 1} to maximize the expected and discounted value of

the stream of the sum of two firms’ profits.

2. The shock for the network formation {νi j} is private information of a delegate-pair i j.

This shock is unknown to the delegates ik, jk, and ℓk, ℓ, k ̸= i, j and identically and

independently distributed.
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By the assumption 1, at the cost of limiting delegate-pairs’ information on other delegate-

pairs’ cost shocks, the game of n firms simultaneously choosing its n − 1 possible col-

laborations g′i = (g
′
i1, ..., g ′in)

′ ∈ {0,1}n−1 becomes the incomplete information game of

n(n− 1)/2 delegates deciding only one connection g ′i j ∈ {0,1}, respectively.

To write down this framework into a model, let Vi j represent firm i’s value function

from the perspective of delegate-pair i j given as follows:

Vi j(s,νi j) = π(ωi) +
§

Et

�

ρVi j(s
′
,ν
′

i j)− TC−i j

�

�

�s, g
′

i j

�

− g
′

i j(C(xi j) + νi j)
ª

(5)

where TC−i j = Σk ̸=i, j g
′

ik(C(xik)+νik) is the total networking cost except a link i j. A firm

j’s value function from the perspective of delegate-pair i j, Vji, is similarly defined. Using

the value function, the expected marginal benefits of firm i and j from the collaboration

i j are respectively given by:

MUi j(s) = EV 1
i j − EV 0

i j − C(xi j)

MU ji(s) = EV 1
ji − EV 0

ji − C(x ji)
(6)

where EV 1
i j = E[ρVi j(s

′
,ν
′

i j)− TC−i j|s, g
′

i j = 1] and EV 0
i j = Et[ρVi j(s

′
,ν
′

i j)− TC−i j|s, g
′

i j =
0] are expected firm values when collaborating and not collaborating, respectively. Then,

the equilibrium concept of R&D collaboration networks considered in this model is pairwise-

stable with transfer (Bloch and Jackson 2007). It implies that a delegate pair i j would

agree to collaborate if the sum of two firms i and j’s expected marginal utilities is positive:

g
′

i j = 1 ⇐⇒ MUi j(s) +MU ji(s)− (νi j + ν ji)> 0 (7)

It allows one side of the link to present a negative marginal payoff but only up to both

firms enjoying positive utility with a transfer. Based on this R&D network decision rule,

the network formation process follows stochastic best-response dynamics.

Inclusive values and bounded rationality Yet there remains the large dimensionality

problem of the state variables because it is a strategic game between delegate-pairs. The

estimation of the expected firm values in the delegate’s best response (7) hinges on the

state variables conditioned on, s = (ω, r,g,x) ∈ RN ×RN ×RN×N ×RdN×N , and the ma-

trix of beliefs on other delegate-pairs’ decisions, which makes computation intractable.

I solve this problem by proposing a vector of inclusive values and imposing the bounded
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rationality of delegates. Inclusive values are the variables that aggregate the essential

or payoff-relevant information in the state variables, s = (ω, r,g,x) (Hendel and Nevo,

2006; Nevo and Rossi, 2008; Aguirregabiria and Ho, 2012; Kalouptsidi, 2018). Then

delegate-pairs rely only on the information of inclusive values, not the entire state vari-

ables, which implies bounded rationality.

Let wi j be a vector of inclusive values for firm i from delegate i j’s perspective, which

I will examine each value after defining the bounded rationality.

Assumption 2. (Bounded rationality)

The expectation of firm i’s value from the delegate i j’s perspective depends on state variables

s= (ω, r,g,x) only through a vector of inclusive values, wi j.

E[ρV i
i j(s
′,ν′i j)− TC−i j|s, g ′i j] = E[ρV i

i j(s
′,ν′i j)− TC−i j|wi j, g ′i j] (8)

The value function of firm j from the delegate i j’s perspective can be similarly assumed.

This assumption states that collaboration delegates are boundedly rational in their

perceptions of how the information in the industry would influence their future values.

In other words, the inclusive values summarize the public information well enough to

represent the state variables. It could be rather unrealistic to presume that delegate-pairs

take every individual firm’s detailed information into consideration. Hence, it might not

be too restrictive to impose bounded rationality that delegate-pairs extract only important

or aggregated information.

A vector of inclusive values that are boiled down from the state variables s= (ω, r,g,x)
is given by:

wi j = (ωi, ri,xi j, Si,cTC
⊺
−i j(P),φi j(P)

⊺)⊺ ∈W (9)

where Si is R&D spillover defined above; Pi j(w, w̃) ≡ Pr(σi j(wi j,wi j,νi j,ν ji) = 1|wi j =
w,w ji = w̃) for w, w̃ ∈ W is a belief (conditional choice probability) for collaboration

i j associated with σ and σ = {σi j(wi j,w ji,νi j,ν ji) : i, j = 1, ..., n, i ̸= j} is a matrix of

strategy functions, one for each delegate-pair; P = {Pi j(w, w̃) : for every i j and w, w̃ ∈
W} is a matrix of beliefs; cTC−i j(P) = Σk ̸=i, j Pikxik is a vector of expected total networking

cost variables with the belief P; and φi j(P) is a vector of the moments of (expected)

networks that summarize the networks such as the expected number of collaborations.

The first three variables, a firm’s own variables (ωi, ri,xi j), are the most important

variables to estimate the expected firm i’s value. Spillover term, Si, aggregates other

firms’ R&D information. The total expected networking cost cTC−i j summarizes the in-

formation from the whole matrix of networking cost variables x except a link i j t using
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the belief. These variables are directly relevant to the payoff. Lastly, to avoid consider-

ing all other delegate-pairs’ information due to the strategic game, a delegate-pair only

considers some moments of the beliefs on other delegate-pairs’ choices, φi j(P), which

summarize the whole information. I would denote w1
i j = (ωi, ri,xi j, Si) as an exogenous

part of inclusive values and w2
i j = (cTC−i j(P),φi j(P)) as an endogenous part of inclusive

values.

At the cost of delegate-pairs’ rationality, the best response of a delegate-pair in the

equation (7) becomes:

g ′i j = 1 ⇐⇒ MU(wi j) +MU(w ji)− (νi j + ν ji)> 0 (10)

where MU(wi j) = MUi j(s) and MU(w ji) = MU ji(s). The marginal utilities draw on

vectors of inclusive values wi j and w ji, which have the feasible number of variables rather

than all state variables.

Based on the inclusive values, I define a Moment-based Markov Equilibrium (MME)

as follows (Ifrach and Weintraub 2017).

Definition 1. (Moment-based Markov Equilibrium)

Each delegate-pair’s strategy depends only on the state variables through the inclusive values.

A Moment-based Markov Equilibrium (MME) constitutes delegate-pairs’ strategy profile and

beliefs (σ∗,P∗) such that

1. Given beliefs P∗, each delegate-pair’s strategy σ∗i j maximizes the sum of the two firms’

values for each possible state (wi j,w ji,νi j,ν ji).

2. Beliefs P∗ satisfies the self-consistency requirement:

P∗ =
�

Pr(g ′i j = 1|wi j(P
∗),w ji(P

∗))
�

i, j∈N
(11)

Or, equivalently it satisfies P∗i j(W
1) = Pr(gi j = 1|W1,P∗) where W1 = [w1

i j]i, j∈N is a

matrix of all delegate-pairs’ exogenous part of inclusive values.

The existence of an MME of the game follows from Ifrach and Weintraub (2017).

3.3 Direct and indirect effect of R&D

From this theoretical framework, we can define the one-time direct effect of private R&D

on productivity as follows:

DEi t =
∂ E[ωi t+1|·]
∂ ri t

= β2 (12)
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where β2 is the effect of R&D on next period productivity in equation (2). The direct

effect is what canonical models define as the effect of private R&D. However, in this

framework, private R&D allows firms to expand collaboration networks and eventually

enjoy higher spillovers. I define it as the indirect effect of private R&D through network

formation. The one-time indirect effect through network formation and spillovers can be

written as:

IEi t =
∂ E[ωi t+2|·]
∂ ri t

− β1β2 = β3
∂ E[Si t+1|·]
∂ ri t

(13)

where β1β2 represents R&D’s effect through time-persistency in productivity and β3 is the

effect of R&D spillovers on productivity in equation (2). Thus the total one-time effect of

R&D on productivity would be DEi t + IEi t . In the empirical estimation, I would compare

the direct and indirect effects of R&D and how large it becomes when considering the

total effect rather than just the direct effect, as we did in the canonical model. Also,

since its effect cumulates over time as productivity and collaborations are usually time-

persistent, the long-term effect will also be discussed.

4 Estimation of the Structural Model

This section demonstrates the identification and estimation strategies for the model in

section 3. My approach to estimating the structural model proceeds in two steps. First,

the production function estimation is conducted, accounting for the endogenous produc-

tivity evolution, following the modified Ackerberg, Caves, and Frazer (2015) approach.

Second, I estimate the network formation function by matching delegates’ best response

and the R&D collaboration data. Given the estimates from this section, the comparison

between the direct and indirect effects of R&D will be discussed.

4.1 Production function estimation

The main obstacle in the empirical estimation of production function is that the unob-

served (by the econometrician) firm-specific productivity ωi t could be correlated with

flexible input variables such as labor. To address this problem, I adopt the control func-

tion approach that is proposed by Olley and Pakes (1996) with the correction advocated

by Ackerberg, Caves, and Frazer (2015) (henceforth ACF). This method leverages the in-

formation contained in the capital investment level ii t , as productivity is known to each

firm when it decides on capital investment.

Obtaining consistent estimates of productivity ωi t and the parameters in equation
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(1) and (2) requires three sets of assumptions. The first set relates to the timing of

firms’ decisions. Capital is a state variable, determined in the preceding period as a

deterministic function of the firm’s previous capital stock and its investment decision:

ki t = κ(ki t−1, ii t−1). Labor, on the other hand, may or may not have dynamic implications.

It may be fully adjustable and chosen after productivity is realized or partly (or wholly)

determined in the previous period. It, however, needs to be chosen prior to the capital

investment ii t decision. R&D levels and spillover levels are also chosen or revealed before

the capital investment decision.

Based on those variables and productivity, the firm chooses capital investment accord-

ing to the following function:

ii t = I(ki t , li t ,ωi t , ri t , Si t) (14)

where I(·) is the demand function of capital investment. Lastly, the demand for capi-

tal investment I(·) is strictly monotonic in productivity conditional on other variables.

Compared to the original ACF assumptions, this assumption additionally considers R&D

investment and spillover terms because the evolution of productivity depends on them.

Thus this assumption on the demand for capital investment extends the ACF assumption

but is employed in recent papers considering spillover effects as well (De Loecker 2013;

Arque-Castells and Spulber 2022). It requires me to check the validity of this assumption

in the context of spillovers and forming collaborations. It could be violated if capital

negatively affects network formation because a firm might not want to increase capital

investment even though productivity increases to avoid a potential decrease in spillovers

in the future. However, I found that there is no significant effect of capital on forming

collaborations, as shown in Table 3. Unless it affects network formation, there is no clear

incentive for a firm not to increase capital investment as productivity increases at a cer-

tain level of spillovers and R&D level. In addition, I check the ex-post validity of the strict

monotonicity assumption shown in Appendix B.

This guarantees that productivity can be expressed solely as a function of observables

ωi t = I−1(ki t , li t , ii t , ri t , Si t). Substituting into the production function (2) yields:

yi t = α0 +αkki t +αl li t + I−1(ki t , li t , ii t , ri t , Si t) + εi t

= ϕ(ki t , li t , ii t , ri t , Si t) + εi t

(15)

where ϕ(·) is an unknown function of E[yi t |ki t , li t , ii t , ri t , Si t]. I am able to nonparamet-

20



rically estimate ϕ and productivity ωi t can be expressed as:

ωi t = ϕi t −α0 −αkki t −αl li t (16)

where ϕi t = ϕ(ki t , li t , ii t , ri t , Si t). Then in the productivity evolution equation (2), sub-

stituting ωi t−1 with the equation (15) yields:

ωi t = β0 + β1ωi t−1 + β2ri t−1 + β3Si t−1 + ui t

= β0 + β1(ϕi t−1 −α0 −αkki t−1 − βl li t−1) + β2ri t−1 + β3Si t−1 + ui t

(17)

Then the suitable set of moments is given as:

E[(ui t + εi t)[ki t , li t−1,ϕi t−1, ri t−1, Si t−1]] = 0 (18)

With this set of moments, production elasticities and parameters in the production evo-

lution process can be consistently estimated by GMM.

Productivity spillovers One might think that spillovers Si t could include not only R&D

spillovers Σ j ̸=i gi j t t i j r j t , but also productivity spillovers Σ j ̸=i gi j t t i jω j t . Thus firms can

learn from collaborating firms’ overall knowledge level as well. I propose an extended ap-

proach to consider both R&D and productivity spillovers, Si t = [Σ j ̸=i gi j t t i j r j t , Σ j ̸=i gi j t t i jω j t],
where productivity spillovers are not observed. With productivity spillovers, the typical

ACF method suggested above cannot be directly employed because I cannot recover a

function ϕ(·) in equation (15) as now Si t = [Σ j ̸=i gi j t t i j r j t , Σ j ̸=i gi j t t i jω j t] requires the

information on ω j t which we don’t observe at this point.

To solve the unobservability of productivity spillover, I additionally assume (1) the

additive separability of productivity spillover and (2) |λ|< 1 in the following equation:

ωi t = λΣ j ̸=i gi j t t i jω j t + Ĩ−1(ki t , li t , ii t , ri t ,Σ j ̸=i gi j t t i j r j t) (19)

The second assumption |λ| < 1 implies that the effect of a firm’s own productivity on

the capital investment decision is larger than that of the collaborating firm’s productiv-

ity. This is typically true because a firm’s own productivity is more important than the

collaborators’. For the simplicity of notation, I denote zi t = (ki t , li t , ii t , ri t) as a vector of

firm-specific variables except spillover terms. Then using a vector form yields:

ωt = (I−λGt)
−1Ĩ−1(zt , Gtrt) (20)
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where zt = (z1t , ..., zN t) and the ith element of Ĩ−1(zt , Gtrt) is Ĩ−1(zi t ,g
⊺
i trt) and Gt is

technological similarity weighted network matrix with an abuse of notation. Then |λ|< 1

implies that I can approximate (I+λGt)−1 by a geometric series expansion as follows:

ωt = Σ
∞
s=0λ

sGs
t Ĩ
−1(zt , Gtrt) (21)

Then I can recover productivity and follow the remaining procedure. To illustrate, If I

simply assume linearity of the unknown function I−1(·) and use a geometric series with

s = 0, 1, then E[yi t |·] is obtained by regressing yi t on (zi t , gi t1, gi tzi t , g2
i t rt) where g2

i t is

ith row of G2
t . The intuition of this is that the information on productivity is obtained

from the capital investment ii t ’s decision and the information on productivity spillover

is obtained from its friends’ other information or the information of the friends of its

friends.

4.2 Network formation function estimation

The primary objective of this estimation is to determine the effect of private R&D on the

likelihood of forming a collaboration between two firms. This is achieved by matching

the delegate-pair’s best response function in equation (10) with the collaboration data

using a binary-response estimation method. In the best response function, the marginal

benefits of collaboration are approximated with the vector of inclusive values wi j t and

some basis functions as follows:

MU(wi j t)≈ Φ(wi j t)c

MU(w ji t)≈ Φ(w ji t)c
(22)

where Φ(·) are the basis functions and c is a vector of approximation parameters. The

brief summarization of the estimation procedure is given as follows: (1) Estimate the

equilibrium beliefs on collaboration P∗ and obtain inclusive values wi j t(P∗). (2) Estimate

the approximation parameters c using a probit regression. The subsequent paragraphs

delve into potential issues and provide a more comprehensive overview of the estimation

procedure.

Multiple equilibria This network-formation model fundamentally admits multiple equi-

libria since there could be multiple pairs of beliefs and parameters that result in the same

outcome (11). One estimation strategy for the games of incomplete information is es-

timating equilibrium beliefs directly from the data. However, since I observe one single
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network, the equilibrium beliefs cannot be directly obtained from the data. Also, esti-

mating P∗(W1) as the matrix of exogenous inclusive values suffers from the curse of di-

mensionality as the matrix of exogenous inclusive values W1 grows quickly as N grows.

To address the problem, I follow the approach suggested in Leung (2015) by assuming

symmetry of equilibrium beliefs.

In order to define symmetry in equilibrium beliefs, I need to define permutation func-

tions. Fix any two delegate-pairs i j, kl in N × N . Define π(i j)(kl) : N × N → N × N as it

maps the index i j to the index kl, kl to i j. Similarly, define πw
kl as a function that swaps

a delegate pair i j’s inclusive values and kl ’s inclusive values. To simplify the notation,

I will let π(·) denote an arbitrary element in Π ≡ {(πkl ,π
w
kl); i j, kl ∈ N × N}, the set

of permutations. Further, I will abuse notation and use π with an element in the set of

permutations and with each of its two components as arguments to the function clarify

the relevant component.

Assumption 3. (Symmetric equilibrium beliefs)

A belief function in the equilibrium, P∗, is symmetric, i.e., for any delegate-pair i j ∈ N ×N,

and permutation π ∈ Π, P∗i j(W
1) = P∗

π(i j)(π(W
1))

It implies that two delegate pairs with the same attributes have the same conditional

linking strategies ex ante, prior to their private information draws. It still admits multiple

equilibria but this assumption enables the direct estimation of equilibrium beliefs from

the data by simply taking the empirical frequency of observationally equivalent delegate

pairs, which solves a curse of dimensionality.

Estimation Leveraging symmetry, this naturally suggests a consistent two-step estima-

tor following (Leung 2015; Comola and Dekel 2022). The estimation procedure is as

follows:

1. Nonparametrically estimate the equilibrium beliefs P∗ using only the observable

exogenous part of inclusive values w1 and obtain inclusive values w(P∗).

2. With the obtained inclusive values, estimate the approximation parameters c in the

equation (22) using probit regression under the assumption that networking cost

shock follows a normal distribution.

Endogeneity and R&D tax credit Another concern that arises from the data is that

R&D investment can correlate with the error term. The future collaboration might have

been known to a firm, and it could affect R&D decisions in the current period. To address
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the endogeneity problem, I use R&D user cost induced by tax credit to instrument R&D

investment levels, as first suggested in Bloom, Schankerman, and Van Reenen (2013) and

exploited in many papers (Konig, Liu, and Zenou 2019; Zacchia 2020; Arque-Castells and

Spulber 2022). R&D tax credit is a government-sponsored stimulus in tax to promote in-

novation by incentivizing R&D investments. It is a supply-side shock from tax-induced

changes to individual costs of R&D and, therefore, free from the current period demand

shock. The calculation of R&D depends on various firm features and has changed multi-

ple times. Generally, it depends on the dates of incorporation and initiation of research,

gross revenue, and research expenses for the past few years. It also depends on state

R&D tax credits so that a firm’s tax credit relies on multiple states’ tax credits based on

where its inventors and scientists are. Thus, firm-specific R&D user cost is constructed

using tax credits of R&D.15. The rationale for this identification strategy is that lagged

R&D tax credit directly affects R&D investments but only indirectly affects the forma-

tion of collaborations. I use a control function approach following Wooldridge (2015).

The residuals from a regression of R&D user cost on all other variables, including R&D

investments, are added to a probit regression as additional variables.

5 Empirical Results

In this section, I provide the empirical estimation results of the framework and examine

the R&D’s direct and indirect effect on productivity through the R&D collaboration net-

work. In the production function estimation, I don’t separate industry-level estimations

because many collaborations are across various industries. Instead, I add industry-fixed

effects. A first-degree polynomial is used to approximate ϕ(·) in the first-stage estimation

of ACF.16 The estimation of the network formation model uses 6,859,270 observations

(n × (n − 1) × T). For a collaboration i j, since I cannot distinguish firm i and firm j’s

influences on the formation separately (i.e., the approximation parameter c for a variable

is the same for firm i and j’s), I report one of them, which is the averaged effect. The

belief estimation in the first stage utilizes the second polynomial sieve estimation. The

second stage also uses the second polynomial bases functions for the approximation. In

addition, for the variables of the moments of the beliefs, φi j(Pt), I use the expected sum

and mean of collaboration beliefs φi j(Pt) = [Σ j ̸=i Pi j t (1/N)Σ j ̸=i Pi j t]⊺.

15See Appendix B.3 in the Supplementary Material of Bloom, Schankerman, and Van Reenen (2013)
for details on the specification of R&D tax credit

16Since the data set is not large enough but covers many different industries, errors from using more
flexible basis functions seem to be more than benefits.
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Table 2: Production function estimation

(1) (2) (3)

ri t−1
0.0146∗∗

(0.0005)
0.0097∗∗

(0.0005)
0.0097∗∗

(0.0005)

Si t−1 R&D spillovers
0.0024∗∗

(0.0001)
0.0032∗∗

(0.0008)

ω spillovers
−0.0005
(0.0005)

ωi t−1
0.6873∗∗

(0.0067)
0.6870∗∗

(0.0067)
0.6869∗∗

(0.0067)

li t
0.7878∗∗

(0.0487)
0.7913∗∗

(0.0478)
0.7915∗∗

(0.0480)

ki t
0.2080∗∗

(0.0625)
0.2010∗∗

(0.0618)
0.2008∗∗

(0.0620)

Constant
2.6295∗∗

(0.0566)
2.6706∗∗

(0.0574)
2.6722∗∗

(0.0574)
Obs 13,525

All specifications are controlled for year- and industry-fixed effects.
*Significant at 0.05% level, **Significant at 0.01% level.

5.1 Estimates of input elasticities and productivity process

Table 2 outlines the estimated coefficients of the production function and the productivity

evolution process. The estimated coefficients that differ significantly from zero at the 0.01

and 0.05 significance levels are denoted by double and single asterisks, respectively. The

positive coefficient estimates for ri t−1 and Si t−1 suggest that firms that either invest in their

own R&D or collaborate on R&D projects with other firms have higher future productivity

levels compared to those that do not on average. In column (1), not accounting for

spillover effects, the direct marginal effect of R&D on output is 0.015, corroborating

findings from previous research.17 Accounting for spillover effects, however, reduces

the average impact of R&D to 0.0097 in columns (2) and (3). In those columns, while

the coefficients for R&D spillovers are positively significant with the marginal effect of

0.0024-0.0032, the coefficient for productivity spillovers is insignificant. It implies that

the spillover effect from collaborating firms is captured by collaborators’ R&D spillovers

rather than productivity spillovers.

Based on the result in column (2), a 10 percent increase in private R&D investment

in a single period results in a 0.097 percent efficiency gain in the following period, while

17Hall, Mairesse, and Mohnen (2010) report variations in the effects of R&D on revenue ranging from
0.01 to 0.25, centered around 0.08. Doraszelski and Jaumandreu (2013) present estimates of elasticity on
output for 10 Spanish manufacturing industries, with the average value for all firms standing at 0.015.
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a 10 percent increase in the most technologically similar collaborating firm’s R&D input

results in a 0.024 percent increase in the next period productivity. Also, the effect of past

productivity on the current productivity level is captured by the coefficient of ωi t−1. Past

productivity demonstrates time persistence with an estimated coefficient of 0.687, indi-

cating a substantial long-run effect of one-time shock. Leveraging the persistent nature

of productivity, investing 10 percent more in R&D in a single period results in a direct

long-term efficiency gain of 0.3 percent.

The remaining variables in the profit function—capital and labor—also exert signif-

icant effects, with respective coefficients of 0.2010 and 0.7913. The sum of these esti-

mated coefficients is approximately 1, indicative of a constant return to scale.

5.2 Estimates of network formation parameters

Table 3 displays the estimated average marginal effects of network formation variables

except for total cost variables. The numbers in the Table represent the average percentage

point increase in the probability of forming a link from the marginal increase of each

variable, and standard errors are in parenthesis. The average marginal effects are usually

small because the collaboration network is sparse; around 0.5% of all possible firm pairs

are connected. The second column is the Probit regression result, and the third column

is the IV-Probit regression result using R&D user cost induced by the tax credit as an

instrument. vi t indicates the residual from the first estimation stage for the IV-Probit

regression.

The average marginal effect of lagged R&D investment ri t−1 is 0.024 percent point

in Probit regression but increases to 0.091 percent point in IV-Probit regression. The

endogeneity problem embedded in lagged R&D is significant as the residual from the

first stage estimation vi j t is negatively significant. This indicates there could be a negative

simultaneity problem in collaboration gi j t and lagged R&D investment ri t−1. Intuitively,

if a next-period collaboration is already determined or known to a firm, it tends to reduce

R&D investment.

Based on the IV-Probit result, a 10 percent increase in lagged R&D investment in-

creases the expected number of collaborators by 3 percent for firms engaged in any col-

laboration and increases the probability of having at least one collaboration by 6 percent

for firms in no collaboration. In addition, lagged R&D’s effect on increasing the number of

collaborators is heterogeneous depending on how many collaborators a firm already has.

I first divide firms into the groups with 1 collaborator, 1 < collaborators ≤ 3, 3 < collab-

orators ≤ 9, and more than 9 collaborators, considering that 1st, 2nd, and 3rd quartiles
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Table 3: Network formation estimation

Second stage estimation
Probit IV-Probit

ri t−1
0.024∗∗

(0.005)
0.091∗∗

(0.028)

ωi t−1
0.228∗∗

(0.027)
0.039

(0.092)

ki t−1
0.007

(0.004)
−0.016
(0.010)

Si t−1
0.007∗∗

(0.001)
0.009∗∗

(0.001)

Previousi j t−1
0.601∗∗

(0.005)
0.613∗∗

(0.004)

Durationi j t−1
0.173∗∗

(0.002)
0.176∗∗

(0.002)

R&D similarityi j t−1
0.042∗∗

(0.008)
−0.027
(0.022)

Geographical similarityi j
0.072∗∗

(0.005)
0.073∗∗

(0.005)

Tech similarityi j
0.159∗∗

(0.004)
0.140∗∗

(0.007)

Market similarityi j
0.117∗∗

(0.009)
0.117∗∗

(0.009)

ϕ(Pi t) Σ j ̸=i Pi j t
−0.019∗∗

(0.007)
−0.059∗∗

(0.018)

(1/N)Σ j ̸=i Pi j t
0.104∗∗

(0.028)
0.117∗∗

(0.030)

vi j t
−0.067∗∗

(0.027)
Pseudo-R2 0.753 0.753

First stage estimation

R&D user costi t−1
−0.867∗∗

(0.006)
Observations 6,859,270

The numbers in the table are the average percentage point increase in
the probability of forming a link from the marginal increase of each
variable, and standard errors are in parenthesis. The estimates for
the expected total cost variables, cTC−i j , are excluded in this table. All
specifications are controlled for year- and industry-fixed effects. vi j t is
the residual from the first stage estimation for the IV-Probit regression.
*Significant at 0.05% level, **Significant at 0.01% level.
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of the number of collaborators are 1,3, and 9, respectively. For the first group with only

one collaborator, the number of next-period collaborations is expected to increase by 5

percent from a 10 percent increase in R&D. Then its effect decreases as the number of

collaborators increases; 3 percent, 2 percent, and 1 percent in each following group. It is

intuitively plausible since the marginal benefit from adding more collaborators decreases

as a firm already has many collaborators.

Lagged productivity ωi t−1 marginally increases probability by 0.228 percent point

in Probit regression, but it loses its explanatory power to R&D investment in IV-Probit

result. There are intuitively two conflicting reasons for highly productive firms to form

or not to form collaborations. Highly productive firms are easier to have collaborations

as attractive collaboration partners, but they might not have enough incentive to work

with others since they are already more productive than others. Also, collaborations are

time-persistent. If two firms have ever been in a collaboration before, it increases the

probability of forming a collaboration again by 0.613 percent point. More specifically,

one more year of the duration of collaboration raises the likelihood additionally by 0.176

percent point. In addition, firms are more likely to form a collaboration as they are more

geographically, technologically, or market-wise similar. The Jaffe technology and market

similarity measures are used for technology and market similarities between firms i and

j. The geographical similarity is binary, having a value of 1 if the two firms are located

in the same state.

5.3 Direct and indirect effect of R&D

In the previous subsections, we find evidence that R&D investment not only directly

improves productivity but also increases the likelihood of forming R&D collaborations,

Pr(gi j t = 1). As discussed in section 3.3, the endogenous network formation framework

enables a firm to enjoy additional efficiency gains from investing in R&D through better

network formation and higher spillover levels. This subsection discusses the total R&D

effect, including both direct and indirect effects given in equation (12) and (13). For

counterfactual work, I assume that equilibrium beliefs are continuous on variables.

First, we will analyze the one-time effect of a 10 percent R&D increase on productivity.

As given in Table 2, a 10 percent increase in R&D directly results in a 0.097 percent

efficiency gain on average. To obtain the indirect effect of a 10 percent increase in R&D

through network formation, I consider the following:

IEi t ≡ β3

¦

E[Σ j ̸=i gi j t+1 t i j r j t+1|rh
it , ·]− E[Σ j ̸=i gi j t+1 t i j r j t+1|ro

i t , ·]
©

(23)
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Table 4: The direct and indirect effects of a 10% in R&D

Direct effect Indirect effect
All firms Firms in collabo

Mean 0.097 0.012 0.022
1st Quartile 0.097 0.000 0.004
2nd Quartile 0.097 0.003 0.014
3rd Quartile 0.097 0.015 0.033
Obs. 8,903 8,903 4,302

Note: ‘All firms’ include firms with positive R&D investments and
‘Firms in collabo’ include firms with positive R&D and at least one col-
laboration.

where β3 is the coefficient for the spillover effect on productivity and rh
it and ro

i t are 10

percent increased R&D and the initial R&D, respectively. In equation (23), the first term

is the expected spillover level under 10 percent increased R&D, and the second term is the

expected spillover level under the initial R&D. Thus, it calculates the expected produc-

tivity gain from expanded R&D collaboration network and higher knowledge spillover

levels.

In addition, based on each realization of the R&D collaboration network and previous

R&D investment level, firms’ next period R&D investment r j t+1 could be adjusted as well.

There are two conflicting incentives to adjust R&D investment upon forming collabora-

tions. Collaborating firms might increase their R&D from conducting a new R&D project

with collaborators, but at the same time, they might reduce R&D by enjoying their col-

laborative partners’ resources. To account for those incentives, I use the approximated

adjusted R&D to consider potential changes. To obtain the adjusted r j t+1, I do not go

through the precise dynamic decision rule for R&D investments. Instead, I approximate

it from the data by deriving E[r j t+1|n j t+1,X j t+1] where n j t+1 is the number of collabora-

tions firm j have at t + 1 and X j t+1 includes firm characteristics such as previous R&D

investment, capital, labor, and sales and R&D user costs induced by tax credits to reflect

the R&D decision rule. It implicitly presumes that the R&D investment level only de-

pends on the number of collaborations, not on the characteristics of collaborators. I ran

a linear regression with those variables and year-, industry-, and firm-fixed effects and

used estimated parameters to obtain the adjusted R&D (See Appendix C).

The simulation algorithm for calculating the indirect effect is as follows. I first define

Ph
i j t+1 and Po

i j t+1 as conditional choice probabilities of forming a collaboration between i

and j at t + 1 with 10 percent increased R&D and the initial R&D, respectively.

1. Draw two R&D networks, gh
t+1 = {g

h
i j t+1}i, j and go

t+1 = {g
o
i j t+1}i, j, from Ph = {Ph

i j t+1}i, j
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Figure 6: Impulse function of a 10% R&D increase shock

and Po = {Po
i j t+1}i, j, respectively

2. Under the drawn R&D networks, obtain the adjusted R&D investment levels, rh
it+1

and ro
i t+1 for all i.

3. Calculate the indirect effect, β3

�

Σ j ̸=i g
h
i j t+1 t i j r

h
jt+1 −Σ j ̸=i g

o
i j t+1 t i j r

o
j t+1

	

4. Iterate 1-3 l times and obtain the average of the simulated indirect effects.

I use 5000 simulations and Table 4 summarizes the one-time effects of a 10 percent

increase in R&D investment. Figure 6 describes the results in Table 4 to show its relative

magnitude evidently. The indirect efficiency gain through collaborations varies from 0

to 0.015 percent within the 1st and 3rd quantiles of the sample with a mean of 0.012

percent. With the subsample of firms in collaborations, the effect tends to be larger

because they are more likely to expand their networks. It implies that while the direct

effect increases productivity by 0.097 percent, a firm can expect 0.012 (0.022 for firms

in collaborations) additional efficiency gain through potential collaborations on average.

However, since both productivity and collaboration are time-persistent, their long-

term effect could be more substantial. Figure 7 displays the impulse functions of a 10

percent R&D increase shock. The solid line is the direct effect of R&D in the canonical

model. In the first period of shock, a firm directly benefits from investing more in R&D.

The effect persists over time because productivity is time-persistent, but it decays as time

goes on. However, if we consider endogenous network formation, a firm might enjoy ad-

ditional efficiency gain in the following periods by expanding the collaboration network,
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Figure 7: Impulse function of a 10% R&D increase shock

and therefore, R&D shock decays slowly. The short- and long-dashed lines represent the

averaged total R&D effect in the endogenous network formation model averaged for all

firms and firms in collaborations. Thus a long-term effect of a one-time 10 percent R&D

increase shock is 0.31 percent in the canonical model with the direct effect but obtains

0.36 percent on average (0.40 if averaged for firms in collaborations) in the general-

ized model considering both the direct and indirect effects (i.e. For a median firm, by

investing $147 million more in R&D, it would expect $165 million of output gain from

the direct effect and $28 million of additional output gain from the indirect effect via

expanding network.18). It indicates that the average effect of R&D is 16 percent underes-

timated in the canonical model. In the generalized model accounting for the endogenous

network formation, the result suggests that R&D investment is more effective when firms

collaborate in the economy, and a firm has more incentive to invest in R&D investment

by considering the network effect.

5.4 Implications on R&D subsidy

Based on the estimation results, this subsection delves into the implications of R&D sub-

sidy. The U.S. government has been providing R&D subsidies to firms to support R&D

activities and promote productivity in the economy. Specifically, since the inception of

the Economic Recovery Tax Act of 1981, firms elevating their R&D expenditures beyond

18It assumes the constant revenue level across periods.
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a base level have been entitled to an R&D tax credit, aiming to incentivize further invest-

ment into R&D (Hall 1993). The effectiveness of an R&D tax credit in amplifying R&D

investment has been explored in numerous studies. While its effectiveness varies across

studies and data, in this subsection, I adopt a price elasticity of unity (i.e. a dollar-for-

dollar increase in R&D spending from R&D tax credit) following Hall and Van Reenen

(2000) and Bloom, Schankerman, and Van Reenen (2013). Then I analyze marginal

private and social returns to R&D spending to give implications for R&D subsidy policies.

In the context of welfare, disentangling the R&D’s effect into the direct and indirect

effect through network formation is especially crucial to policymakers. The presence

of collaborations amongst firms in the economy could cause market failure, given that

firms do not account for external spillover effects through collaborations when deter-

mining R&D levels. This market failure is intensified if collaborations are endogenously

determined, as fostering collaboration networks signifies an additional external benefit

by potentially generating more future spillover effects in the economy. Thus, firms that

actively collaborate or exhibit a higher propensity to collaborate may generate more so-

cial welfare than previously analyzed. This indicates that a targeted subsidy might offer

greater benefits than a uniform subsidy.

First, one-time marginal private and social returns to R&D under the canonical model

with exogenous network formation are given as follows:

MPR0
i t =

Yi t

Ri t
β2

MSR0
i t =MPR0

i t +Σ j ̸=i gi j t

Yj t

Ri t
β3

(24)

where β2 and β3 are coefficients for private R&D investment and spillovers from collabo-

rating firms, respectively, and Yi t and Ri t are sales and R&D expenditures in dollars. MPR

considers the direct effect of firm i’s R&D on output. MSR includes MPR and the effect

on the outputs of other firms diffusing through spillovers.

With the generalized model where we consider the indirect effect of R&D through

endogenous network formation together, one-time expected marginal private and social

returns are revised as follows:

MPR1
i t =

Yi t

Ri t
β2 +

Yi t+1

Ri t
·
∂ Si t+1

∂ ri t
β3

MSR1
i t =MPR1

i t +Σ j ̸=i gi j t

Yj t

Ri t
β3 +Σ j ̸=i

Yj t+1

Ri t
·
∂ S j t+1

∂ ri t
β3

(25)

In addition to the components given in equation (24), we observe additional gains through
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Table 5: Private and social returns to R&D

Canonical model General framework

Group of firms

(1)

MPR
(%)

(2)

MSR
(%)

(3)
Wedge
Percent
Points

(4)

MPR
(%)

(5)

MSR
(%)

(6)
Wedge
Percent
Points

(7)
Med
Emp

(1,000)

(8)
Med
R&D

($100m)
1. All firms in collabo 25.9 65.0 39.1 32.8 94.7 61.9 10.5 54.2
2. #Collabo ≤ 1 41.2 60.4 19.2 43.7 91.4 47.7 3.5 14.6
3. 1<#Collabo ≤ 3 31.7 77.5 45.8 37.3 114.4 77.1 5.7 30.0
4. 3<#Collabo ≤ 9 27.4 87.0 59.6 36.8 132.1 95.3 14.0 82.7
5. 9<#Collabo 16.7 56.6 39.9 25.0 74.9 49.9 37.8 382.6

Notes: This table presents median values of the rates of return to R&D of each group of firms in collabora-
tions according to equation (24) and (25) for two scenarios: (1) canonical model with exogenous network
formation and (2) general framework with endogenous network formation. Column (3) and (6) contains
the absolute difference between MPR and MSR under the canonical model and general framework, respec-
tively. Columns (7) and (8) present the medians of employees in thousand and R&D investments in $100
million. Each group of firms with a different number of collaborations is based on the 1st, 2nd, and 3rd
quartiles of the number of collaborations (1, 3, and 9 collaborations, respectively).

expanding the collaboration network and increasing spillovers in the next period in both

MPR and MSR.

In deriving MPR and MSR, I cannot directly obtain the marginal effect from the deriva-

tion because the collaboration status g is not differentiable. Instead, I obtain the private

and social return from a 10 percent increase in R&D as done in section 5.3 and divide

them by the amount of the increase in R&D.

Table 5 displays private and social returns to R&D under the canonical and general

frameworks. Columns (1), (2), (4), and (5) represent median values of private and social

returns to R&D in percentage for each firm group in collaboration. Columns (3) and

(6) show the absolute difference between private and social returns. In the canonical

model, MPR and MSR are 25.9% and 65.1%, respectively, when pooling all firms in

collaborations together (i.e., a $1 increase in a firm’s R&D expenditure increases its own

output by $0.259 and total output by $0.651). The wedge percentage point between

MPR and MSR is 39.2, which mirrors previous results in the literature. When considering

endogenous network formation in the general framework, the median MPR and MSR rise

to 32.8% and 94.7%, respectively, indicating a wider 61.9 percentage point wedge.

In rows 2-5 of Table 5, I categorize firms by the number of collaborations based on

their 1st, 2nd, and 3rd quartiles. Within each model, MPR decreases as the number

of collaborators increases because the overall firm size and R&D investments are larger

in firms with many collaborators. However, MSR tends to amplify even as marginal

values typically decline with escalating R&D investment because firms generate more
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(a) Median MSRs and MPRs

(b) Wedges between the median MSRs and MPRs

Figure 8: Median MSRs and MPRs and their wedges (MSR - MPR)
across firms with different number of collaborations
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social benefits through more collaborators. However, this tendency recedes for firms

with over 9 collaborations, as described in row 5, because large firms tend to collaborate

with smaller firms to avoid potential competition, whereby the decline in marginal values

supersedes the advantages of additional collaborations.

Compared to the canonical model with the exogenous network, once we allow the en-

dogenous formation of R&D collaborations, MPR and MSR increase due to the additional

gains from expanding the network in all groups. However, this additional gain is more

evident in MSR; thus, the wedges between the median MPRs and MSRs, which need to

be subsidized, are higher in the general model than in the canonical model–increased by

22.8 percent points. This increase is particularly pronounced for firms with fewer col-

laborators, as seen in rows 2 and 3. The wedges for those firm groups have more than

or almost doubled. Although the wedge increase between the two models remains pos-

itive, it is less discernible for firms with over nine collaborators. This is because larger

firms with already many collaborators have less incentive to expand their collaboration

network or tend to collaborate with smaller firms to avoid potential competition by in-

creasing their R&D, resulting in minimal additional social gains. On the other hand, by

increasing R&D, relatively smaller firms with few collaborators are more prone to expand

their R&D network with larger firms, which enhances social gains.

Figure 8 shows the depicted features prominently. Figure 8a displays the median

MPRs and MSRs across the groups of firms with each number of collaborations. The lines

with circles represent MPRs, those with triangles indicate MSRs, and dashed and solid

lines denote canonical and general models, respectively. In the canonical model, the peak

median MSR is in the 9-collaboration group; contrastingly, the general model suggests

maximal MSRs in firms with 4-6 collaborations. The same pattern is observed in Figure

8b of the wedges between the median MSRs and MPRs. In addition, the increments

of the median wedges for firms with 1-3 collaborators are also noticeable, resulting in

larger wedges than those above 12 collaborators. To see the overall wedges across firms,

Figure 9 displays the kernel density distributions of the wedges.19 The distributions are

right-shifted and flatter in the general model, indicating higher and more varied wedges.

This pattern is more pronounced in firms with fewer collaborators, reaffirming previous

median-value results.

This result suggests the following. There are two types of R&D subsidy: the uniform

subsidy, such as R&D tax credit, and the targeted subsidy, such as the Advanced Tech-

nology Program (ATP) in the U.S. Especially the ATP puts more weight on collaborating

firms. The results in this section imply that R&D investments from firms in collaborations

19To avoid simulation errors, I used the sample between the first and third quartiles.
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(a) All firms in collaborations

(b) #Collaborations = 1 (c) 1< #Collaborations ≤ 3

(d) 3 < #Collaborations ≤ 9 (e) 9 < #Collaborations

Figure 9: The distributions of the wedges (MSR - MPR) of each group of firms
with different numbers of collaborators
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inadvertently generate social benefits through networks and possible network expansion,

which is not accounted for by firms’ own decisions and leads to market failure. It sup-

ports the importance of the targeted subsidy program for collaborating firms, as in Konig,

Liu, and Zenou (2019). In the canonical model, the targeted subsidy ranking favors large

firms as they are better connected in the R&D network. However, in addition to that, this

paper suggests that smaller firms with fewer R&D networks should also be considered

subsidized since they are more prone to contribute to expanding the R&D networks with

larger firms and, therefore, have high marginal social effects.

6 Concluding Remarks

A significant portion of the empirical literature on innovation and productivity empha-

sizes measuring private returns to R&D investment, typically associated with effects through

innovation or cost reduction. Concurrently, a more recent subset of literature has concen-

trated on estimating the effects of spillovers from firm interactions. This paper bridges

these two literature facets by incorporating the decision on R&D collaboration into a

firm’s dynamic model.

My research examines the R&D investment’s additional role in collaboration network

formation and discusses the direct and indirect effects of R&D accounting for endoge-

nous network formation. It posits that firms, through strategic R&D collaboration, an-

ticipate additional collaborations and knowledge spillovers from their R&D investments.

To disentangle the direct and indirect effects, my model captures two key aspects. First,

productivity is improved by both private R&D investment and spillovers from collabora-

tions. Second, a firm makes dynamic decisions on collaborators based on the expected

gain from collaborations. These features open an additional channel for R&D to improve

productivity through networking.

Utilizing U.S. firms’ R&D collaboration data from 1981-2001, this research quantifies

R&D effects. The estimation results provide that a 10 percent increase in R&D directly

improves productivity by 0.31 percent and indirectly by 0.05 through better collabora-

tions in the long run. It suggests that if we ignore endogenous network formation, the

effect of private R&D is underestimated by 16% on average. These results underline that

firms have more incentive to invest in R&D because they might enjoy more collabora-

tions and knowledge spillovers in the future. Policymakers are advised to subsidize R&D

investments for collaborative firms due to the social benefits produced through current

and potential networks. Also, I especially focus on smaller firms with fewer collabora-

tions, which can generate substantial social advantages by expanding R&D networks with
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larger entities.

The idea suggested in this paper can be applied to other empirical settings. For ex-

ample, the co-working network among researchers or students in schools might be en-

dogenously determined and affected by the invested effort.
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A Data

A.1 Number of collaborations a firm has

Figure 10: Shares of the number of collaborations a firm has

A.2 Summary of the industries collaborating firms operate

To view the collaboration patterns, Table 6 displays the top five industries where collab-

orating firms are most commonly found. The second column lists the percentage of total

collaborations in which each industry is involved, while the last column shows the shares

of within-industry collaborations (i.e., firms in a collaboration operating in the same sec-

tor) among all collaborations. Most firms in collaborations operate in ‘Computer and

electronic products’, ‘Chemical products’, ‘Machinery’, ‘Motor vehicles, bodies and trail-

ers, and parts’, and ‘Computer systems design and related services’, covering up to 72% of

total collaborations. But we observe more across-industry firm pairs than within-industry

firm pairs. About 67% of collaborations in the sample are across-industry pairs, and most

within-industry collaborations are found especially in the sector of ‘Computer and elec-

tronic products’ and ‘Chemical products’.

A.3 Preliminary reduced form evidence

Before introducing the structural model, I provide a preliminary evidence of the effect

of R&D investments on the number of collaborations to motivate the necessity of the

theoretical framework of a firm’s dynamic model incorporating network formation. It
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Table 6: Collaboration patterns across industries

Total share Within-industry
Computer and electronic products 31% 17%
Chemical products 23% 11%
Machinery 7% 1%
Motor vehicles, bodies and trailers, and parts 6% 1%
Computer systems design and related services 5% <1%

The second column is the percentage of collaborations in which either one of two firms in a
collaboration is in each industry and the third column is the percentage of total collaborations in
which both firms in a collaboration operates in the same industry.

has been theoretically and empirically supported that R&D investments or R&D intensity

have a positive effect on forming more R&D collaborations in numerous papers using

various data sets. Those studies mostly focus on simple linear or binary choice regressions

using R&D investments as one of the key independent variables. However, the results

from those studies might be diluted with unobserved heterogeneity in the tendency of

firms with high or low R&D seeking collaborators and simultaneity problem that future

collaborations might already have been known or determined. In this section, I provide

more robust regression evidence exploiting an instrument for R&D investments.

To see their correlation more clearly, I ran the regression using the following equation:

#Collaborationsi t = β0 + βr lnR&Di t−1 +Xi t−1β +ηt +ηm +ηi + εi t (26)

where Xi t includes firm characteristics such as labor, capital, and productivity20 levels

in logs, and ηt ,ηm,ηi are year-, industry-, and firm-fixed effects, respectively. The co-

efficient of the lagged R&D investments, βr , is expected to capture the effect of R&D to

foster the formation of R&D collaborations. However, it might have endogeneity probme

as suggested. To address the endogeneity problem, I use R&D user cost induced by tax

credit to instrument R&D investment levels as described in section 4.2 In this estimation,

state tax credit and federal tax credit components of R&D user cost are used to instru-

ment for R&D expenditures. The rationale for this identification strategy is that lagged

R&D tax credit directly affects R&D investments but only indirectly affects the formation

of collaborations.

Table 7 shows the regression results. Columns (1) and (2) are OLS and IVE results

of the estimation of equation (26), respectively. In both results, lagged R&D investments

have positive effects on the number of collaborations, but the effect becomes larger if I

20I used productivity level obtained from the structural estimation. See section 4.1 for the estimation
strategy.
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Table 7: Regression results on the number of collaborations

Dependent var: # Collaborationsi t

(1)
OLS

(2)
IVE

(3)
IVE

ln R&Di t−1
0.732∗∗

(0.182)
4.251∗∗

1.183
5.427∗∗

(2.486)

ln R&Di t
−0.789
(2.222)

Productivityi t−1
14.674∗∗

(2.296)
9.696∗∗

(0.234)
9.072∗∗

(1.739)

ln Capitali t−1
2.114∗∗

(0.339)
0.901∗∗

(0.423)
0.716
(0.445)

ln Employeesi t−1
−1.763∗∗

(0.379)
−3.003∗∗

(0.438)
−3.113∗∗

(0.449)
First stage estimation

(Federal) R&D user costi t−1
−0.351∗∗

(0.074)
−0.355∗∗

(0.076)

(State) R&D user costi t−1
−1.460∗∗

(0.294)
−0.672
(0.539)

(Federal) R&D user costi t
0.011
(0.076)

(State) R&D user costi t
−0.923∗

(0.530)
Observations 12,695

All specifications are controlled for year-, industry-, and firm-fixed effects.
*Significant at 0.05% level, **Significant at 0.01% level.
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use the instruments that have high explanatory power in the first stage. It implies that

either firms with lower R&D tend to seek collaborators or future known collaborations

reduce R&D investments. Without this endogeneity, the IVE result in column (2) suggests

that lagged R&D increases the number of future collaborations–A 10 percent increase in

R&D contributes to 0.4 more collaborators on average. In addition, in column (3), I add

the same-period R&D as an additional variable to support the timing of forming R&D

collaborations. The number of R&D collaborations depends on the lagged R&D, not the

same-period R&D, as the effect of the same-period R&D is insignificant. It implies that

the decision for the network formation relies on the lagged R&D investments, supporting

that the formation takes time to be effective.

These results suggest that R&D investments boost future collaborations. It motivates

us to study the additional effect of R&D through the formation of a collaboration net-

work. In addition, since the decision for R&D collaborations is a firm’s strategic game

considering its dynamic benefit, it requires the micro-foundation to find the more pre-

cise effect of R&D on forming collaborations. The next session provides the theoretical

framework for estimating the effect of R&D, including the strategic game of collaboration

network formation.

B R&D investment decision

In this framework, the firm uses R&D investment to buy improvement in expected future

productivity. Notably, other firms’ R&D investments also matter through spillovers. Firms

therefore strategically choose their own R&D levels, based on the given R&D collabora-

tion network determined in the previous period.

After the short-term decisions are made, firm-specific productivity levels,ωt = (ω1t , ...,ωN t),
are revealed. A firm has a value function at this stage, V r , as follows and faces an R&D

investment decision problem:

V r
i (s

r
i t ,ξi t) = π(ωi t , ki t) +max

ri t
{Et[ρV r

i (s
r
i t+1,ξi t+1)|sr

i t , ri t]− Cr(ri t ,ξi t)} (27)

where sr
i t ≡ (ωt ,gt ,xt , ki t)′ is a vector of state variables, gt = [gi j t]i, j is a network ma-

trix, xt = [x i j t]i, j is a networking cost matrix, which will be explained in the following

subsection, and ρ is a discount factor. The last term Cr(ri t ,ξi t) represents the cost of im-

plementing R&D where Cr(·) is a cost function and ui t captures the randomness in cost

variation across firms. The cost shock ui t is private and independent across firms and

time. It is therefore an incomplete game of firms. I assume that there exists a Markov
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Table 8: Production function estimation

Dependent var: ii t (1) (2) (3) (4) (5) (6)

ωi t
6.787
(0.0082)

9.4470
(0.1569)

22.3100
(2.4783)

6.9592
(0.0155)

10.9673
(0.2549)

43.1362
(3.664)

ω2
i t

−0.1480
(0.0087)

−1.5516
(0.2700)

−0.2290
(0.0145)

−4.0419
(0.4082)

ω3
i t

0.0510
(0.0098)

0.1415
(0.0151)

li t
0.4044
(0.0017)

0.4032
(0.0017)

0.4033
(0.0017)

0.5224
(0.0044)

0.5177
(0.0043)

0.5166
(0.0043)

ki t
0.6021
(0.0015)

0.6044
(0.0015)

0.6043
(0.0015)

0.4518
(0.0037)

0.4593
(0.0037)

0.4611
(0.0037)

ri t
−0.1063
(0.0009)

−0.1053
(0.0009)

−0.1052
(0.0009)

−0.1435
(0.0024)

−0.1397
(0.0024)

−0.1384
(0.0024)

Si t R&D spillover
0.0270
(0.0001)

0.0261
(0.0001)

0.0262
(0.0001)

−0.0442
(0.0003)

−0.0399
(0.0004)

−0.0405
(0.0004)

ω spillover
−0.0270
(0.0005)

−0.0271
(0.0005)

−0.0267
(0.0005)

All specifications are controlled for year- and industry-fixed effects, and within-group fixed effect regression
is used. *Significant at 0.05% level, **Significant at 0.01% level.

Perfect Equilibrium that determines the optimal R&D levels. In the equilibrium, a firm’s

optimal strategy only depends on (sr
i t ,ξi t) and takes other firms’ strategies as given.

C Strict monotonicity assumption in ACF

We would check the ex-post validity of strict monotonicity assumption in ACF in this

section. To apply ACF method, we need the demand function for capital investment,

I (ki t , li t ,ωi t , ri t , Si t), to be strictly monotonic in productivity. I first estimate the firm-

specific productivity using GMM of the equation (18) under the assumption. Then I

would check if the obtained productivity actually satisfies the strict monotonicity. I run

the following reduced form estimation:

ii t = b0 + b1ωi t + b2ω
2
i t + b3ω

3
i t + bXi t + ξi t (28)

where X i t includes li t , ki t , ri t , and Si t . I also added year and industry fixed effects. In

addition, to account for firm-fixed effects, within-group fixed effect estimation is used for

regression.

Table 8 displays the regression results. Columns (1)-(3) are the results with only
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Table 9: Estimation of R&D adjustment

Dependent var: ln R&Di t

(1) (2)

ln #Collaborationsi t
0.014∗∗

(0.005)
0.017
(0.010)

ln R&Di t−1
0.972∗∗

(0.003)
0.793∗∗

(0.015)

Productivityi t
0.231∗∗

(0.023)
0.063∗∗

(0.031)

ln Capitali t
−0.045∗∗

(0.004)
−0.080∗∗

(0.011)

ln Labori t
0.025∗∗

(0.006)
0.119∗∗

(0.015)

ln Salei t
0.034∗∗

(0.006)
0.122∗∗

(0.014)

R&D user costi t
−0.308∗∗

(0.032)
−0.263∗∗

(0.037)
Firm-fixed effect N Y
Observations 12,713

All specifications are controlled for year- and industry-
fixed effects. *Significant at 0.05% level, **Significant
at 0.01% level.

R&D spillovers, and columns (4)-(6) are the ones with productivity spillovers as well.

Considering that productivity ω spans from 7.9 to 10.5 in this sample of data, the first

derivatives of capital investment ii t with respect to productivity ωi t are always positive

in all specifications. It implies productivity monotonically increases capital investment

conditional on other variables. This result ex-post supports the strict monotonicity in

productivity.

D The adjustment of R&D after forming a link

In this section of the Appendix, I discuss how a firm’s decision on R&D investment is

adjusted upon forming collaboration. I simply approximate E[ri t+1|ni t+1,Xi t+1]where Xi t

includes firm characteristics such as previous R&D investment, productivity, capital, and

R&D user cost induced by R&D tax credit. I ran a linear regression with those variables

and year-, industry-, and firm-fixed effects.

Table 9 shows the regression results. The effect of the number of collaborations is

significant in column (1) without firm-fixed effects, but it becomes insignificant in column
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Table 10: Estimation of the number of collaborations

Dependent var: ln#Collaborationsi t

ln R&Di t
−0.027
(0.251)

ln R&Di t−1
0.661∗∗

(0.303)

All specifications are controlled for year-,
industry-, and firm-fixed effects. *Significant
at 0.05% level, **Significant at 0.01% level.

(2) with firm-fixed effects. As described in section 5.2, two conflicting incentives cancel

out the effects. However, there could be a simultaneity problem if the same-period R&D

investments affect the formation of collaboration. To check its potential effect, Table

10 shows the result of IV regression of the logged number of collaborations on current

and previous R&D investments and other firm variables, such as lagged capital, labor,

productivity, and sales, using R&D user cost as instruments. The coefficients for R&D

investments are the effect of R&D on forming collaborations, and the estimated results

suggest that the number of collaborations is explained by the previous R&D, not the

current period R&D. Therefore, there is no evidence of the simultaneity problem in R&D

investment in Table 9.
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